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INTRODUCTION

1. MOTIVATION

Stability theory is an important branch of the qualitative theory of dif-
ferential equations that was initiated by the Russian mathematician A.M.
Lyapunov in the late nineteenth century. With a long history of more than
a century, Lyapunov stability theory is still a very attractive field of mathe-
matics, with more and more important applications being found in mechan-
ics, physics, chemistry, information technology, ecology, environment, etc.
(see Gu et al. (2003), Hinrichsen and Pritchard (2010), Kolmanovskii and
Myshkis (1999), Krasovskii (1963)).

In addition to stability of solutions, problem of stabilization of the con-
trol systems was also taken into consideration, and they began to study the
stability of the control systems in the 1960s. On the other hand, in mathe-
matical models (are constructed from technical problems in practice) there
are often time delays. These delays are naturally formed, unavoidable in
the transmission and processing of data, and they proved that its presence
will have an effect on the behaviour and properties of the system, including
stability (see Gu et al. (2003), Niculescu (2001)). Therefore, the study of
stability and control for delayed systems are problems of applicable practi-
cality that have been studied by many scholars in recent years (see Boyd
et al. (1994), Duan and Yu (2013), Fridman (2014), Michiels and Niculescu
(2014)).

In addition, processes in practice are often uncertain (with the appear-
ance of system disturbances). These disturbances can occur due to oper-
ational errors, due to interactions between components in the system or
between different systems. Therefore, it is unable to know exactly all the
parameters of the system in the model, or very difficult to apply in prac-
tice. As a result, the optimal evaluation of the effect of disturbances on the
output of the system (the H∞ problem) is a topical problem, studied by
many mathematicians and engineers. Different approaches have been devel-
oped and a large number of important findings on the H∞ control for many
delayed systems have been published in recent years (see Petersen et al.
(2000), Wu et al. (2010), Xu and Lam (2006), Zhou et al. (1995)). However,
many interesting and important open issues in both theory and application
remain unresolved, in particular the existing findings for the H∞ problem
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for many kinds of the delayed control systems are quite modest and needs
to be further researched. That is the motivation for us to implement this
topic.

2. OVERVIEW OF THE RESEARCH PROBLEMS

The (delayed) neural networks is a special class of functional differential
equations, which have been studied extensively for more than two decades
by its successful applications in many fields such as associative memory,
identification and classification, signal processing, image processing, optimal
problems solving, etc. Therefore, class of the first systems is mentioned in
the thesis on the H∞ control problem is the neural networks with mixed
time-varying delays:

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t− h(t))) +W2

∫ t

t−k(t)
c(x(s))ds

+Bu(t) + Cω(t)

z(t) = Ex(t) +Mx(t− h(t)) +Nu(t), t > 0, (1)

x(t) = ϕ(t), t ∈ [−d, 0], d = max{h2, k},

where h(t), k(t) are delay functions satisfying the condition 0 6 h1 6 h(t) 6
h2, 0 6 k(t) 6 k.

In 2009, the exponential stability problem of the neural networks

ẋ(t) = −(A+∆A(t))x(t)+(W0+∆W0(t))f(x(t))+(W1+∆W1(t))f(x(t−h(t)))

with the function h(t) is interval time-varying delay with bounded derivative
that was considered by Kwon and Park. On exponentially stabilizability
problem, the authors Phat, Trinh proposed in 2010 for the neural networks
with mixed time-varying delays

ẋ(t) = −Ax(t)+W0f(x(t))+W1g(x(t−h(t)))+W2

∫ t

t−k(t)
c(x(s))ds+Bu(t),

where delay functions h(t), k(t) are assumed to satisfy the condition: 0 6
h(t) 6 h, ḣ(t) 6 δ < 1, 0 6 k(t) 6 k ∀t > 0. Soon after, this result
was extended to the case where discrete delay h(t) is a continuous function,
taking value in a interval by two authors Thuan and Phat (2012). In 2012,
Sakthivel et al. considered the H∞ control problem for the mixed delay
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neural networks (and there is no delay in the observation)

ẋ(t) = −(A+ ∆A)x(t) + (W0 + ∆W0)f(x(t)) + (W1 + ∆W1)g(x(t− h(t)))

+ (W2 + ∆W2)

∫ t

t−k(t)
c(x(s))ds+ u(t) + (C + ∆C)ω(t),

z(t) = Ex(t),

with delay functions h(t), k(t) satisfy: 0 6 h(t) 6 h, ḣ(t) 6 δ, 0 6 k(t) 6
k ∀t > 0. In this paper, the authors obtained a asymptotically stabiliz-
ability and H∞ condition. In the year 2013, the authors Phat and Trinh
continue to study the H∞ control problem for delayed neural networks

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t− τ1(t))) +Bu(t) + Cω(t),

z(t) = Ex(t) +Mh(x(t− τ2(t))) +Nu(t),

in two cases as follows: the delay functions τ1(t), τ2(t) are differentiable and
their derivatives are bounded by a positive real number less than 1 or the
delay functions are bounded but not necessarily differentiable. And then,
the authors obtained the exponentially stabilizability and H∞ condition for
each case.

To sum up, the above-mentioned results for stability and H∞ control
are mainly restricted by the assumption that the delays are differentiable
functions and that their derivatives have upper limit or simply bounded
functions. Besides, studying the H∞ control problem for the system (1)
with h(t) is a continuous function, no need for differentiability and taking
value in a interval has not received adequate attention from researchers. In
that context, we propose the H∞ control problem for the system (1).

The second problem we are interested in this thesis is the finite-time
H∞ control problem for the linear discrete-time systems with interval time-
varying delay:

x(k + 1) = Ax(k) +Adx(k − d(k)) +Bu(k) +Gω(k),

z(k) = Cx(k) + Cdx(k − d(k)), k ∈ Z+, (2)

x(k) = ϕ(k), k ∈ {−d2,−d2 + 1, . . . , 0},

where d(k) is a delay function satisfying: 0 < d1 6 d(k) 6 d2 ∀k ∈ Z+.
In 2010, the finite-time H∞ control problem for the linear discrete-time
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systems without delay

x(k + 1) = Ax(k) +Bu(k) +Gω(k),

z(k) = Cx(k) +D1u(k) +D2ω(k),

was proposed by Wang et al. This same problem for switched nonlinear
discrete-time systems without delay was investigated by Xiang and Xiao in
2011. By 2012, Song et al. has taken one step further in solving this problem
for linear discrete-time systems with constant delay

x(k + 1) = Aσ(k)x(k) +Ad,σ(k)x(k − d) +Bσ(k)u(k) +Gσ(k)ω(k),

z(k) = Cσ(k)x(k) + Cd,σ(k)x(k − d) +Dσ(k)u(k) + Fσ(k)ω(k).

Shortly thereafter, this result was extended to switched nonlinear discrete-
time systems with constant delay by Zong et al. (2015). On the finite-time
stability and stabilization for linear discrete-time systems with interval time-
varying delay

x(k + 1) = Ax(k) +Adx(k − d(k)) +Bu(k),

there are two fairly typical papers that were announced by Zuo et al. and
Zhang et al. respectively in 2013 and 2014.

It is clear that the above results for finite-time H∞ control for both
linear and nonlinear discrete-time systems are restricted by the assumption
that there is no presence of delay or there is the presence of delay but
simply a constant function. The current study of the finite-time H∞ control
problem for the system (2) with the delay function d(k) satisfies the above-
mentioned interval time-varying condition have not received the attention of
researchers. In this context, we propose the finite-time H∞ control problem
for the system (2).

The third problem to be addressed in this thesis is the finite-time H∞
control problem for the singular discrete-time neural networks with interval
time-varying delay:

Ex(k + 1) = Ax(k) +Wf(x(k)) +W1g(x(k − d(k))) +Bu(k) + Cω(k),

z(k) = A1x(k) +Dx(k − d(k)) +B1u(k), k ∈ Z+, (3)

x(k) = ϕ(k), k ∈ {−d2,−d2 + 1, . . . , 0},

where delay function d(k) are assumed to be time-varying and belong to
a interval as in the system (2). The study of the H∞ control problem for
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the discrete-time neural networks with interval time-varying delays occured
early with two articles Lu et al. (2009) and Sakthivel et al. (2012). How-
ever, the finite-time stability for this class of systems has only been recently
investigated by some researchers. Specifically, the finite-time boundedness
for discrete-time neural networks with time-varying delay was surveyed by
Zhang et al. in 2014, while the finite-time stability for discrete-time fuzzy
neural networks without delay was obtained by Bai et al. in 2015.

At present, the study of stability and control of singular systems are
developing strongly in both theoretical and applied directions. We would
like to point out the research situation for this class of systems as follows.
Stability and robust stabilisation for a class of non-linear uncertain discrete-
time descriptor Markov jump systems without delay were investigated by
Song et al. in 2012. Very soon after, this result was further developed for the
system with time-varying delay in Wang and Ma (2013). For the finite-time
H∞ control problem, the article series Zhang et al. (2014), Ma et al. (2015)
and Ma et al. (2016) in that order considered this problem for linear discrete-
time singular systems with no delay, constant delay, and time-varying delay.
A model for discrete-time singular neural networks can be found in Hahanov
and Rutkas (2009) and the stochastic stability for discrete singular neural
networks with Markovian jump and mixed time-delays was introduced by
Ma and Zheng in 2016.

To our knowledge, until now, the study of the finite-time H∞ control
problem for the systems (3) with the interval-like time-varying delay func-
tion d(k) has not received the attention of researchers. In that context, we
propose the finite-time H∞ control problem for the systems (3).

3. PURPOSE, OBJECT AND SCOPE OF THE THESIS

The thesis focuses on the study of the construction of new Lyapunov–
Krasovskii functionals in order to obtain new significant criteria that solve
the H∞ control problem for some classes of functional differential/difference
equations with the extended delay structure and some classes of functional
differential/difference equations have more general structure. Namely as fol-
lows:

• Content 1: To study the H∞ control problem for the neural networks
with mixed time-varying delays.
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• Content 2: To study the finite-time H∞ control problem for the linear
discrete-time systems with interval time-varying delay.

• Content 3: To study the finite-time H∞ control problem for the singular
discrete-time neural networks with interval time-varying delay.

4. RESEARCH METHODS OF THE THESIS

In order to achieve that goal, the thesis develops the Lyapunov–Krasovskii
functionals technique, in combination with some of the existing tools in anal-
ysis, linear algebra, ordinary differential equations and singular differential
equations.

5. RESULTS OF THE THESIS

The thesis has achieved the following main results:

• Designing a feedback controller solves the H∞ control problem for neural
networks with mixed time-varying delays.

• Proposing sufficient conditions to ensure the H∞ finite-time boundedness
for linear discrete-time systems with interval time-varying delay. Then de-
signing a feedback controller that solves the finite-time H∞ control problem
for this class of systems.

• The corresponding results for singular discrete-time neural networks with
interval time-varying delay are also set. In addition, with this class of sys-
tems, we have simultaneously demonstrated regularity, causality, and unique
existence of solution of the system in a neighborhood of the origin.

6. ARRANGEMENT OF THE THESIS

The thesis is arranged as follows. Apart from Introduction, Conclusion,
List of Published Works and References, the thesis consists of four chapters:
Chapter 1 systematically summarizes the preparation knowledge. Chapter
2 presents a finding of the H∞ control problem for the neural networks
with mixed time-varying delays. Chapter 3 presents findings of H∞ finite-
time boundedness and finite-time H∞ control for the linear discrete-time
systems with interval time-varying delay. Chapter 4 presents the solution
of the finite-time H∞ control problem for the singular discrete-time neural
networks with interval time-varying delay together related results.
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Chapter 1

PRELIMINARIES

This chapter presents briefly some of the classic results in theory of time-
delay systems. The stability, stabilization and H∞ control problem will in
turn be presented along with some additional knowledge needed for the
following chapters. The main contents of this chapter are extracted from
Hien (2010), Thanh (2015), Gu et al. (2003), Hale et al. (1993), Kharitonov
(2013), Kolmanovskii and Myshkis (1999), Wu et al. (2010), Zhang and Chen
(1998) and Zhou et al. (1995).

1.1. Stability and stabilization problems for time-delay systems

1.1.1. Stability problem

In this section, we first present theorems of existence and uniqueness of
local solutions and existence and uniqueness of global solutions of differential
systems with delay; then we state concepts: stability, asymptotic stability,
exponential stability, etc., along with the Lyapunov–Krasovskii criteria en-
sure the corresponding stability.

Next, we provide definitions of stability and asymptotic stability for
difference systems with delay.

1.1.2. Stabilization problem

In this section, we first present definitions of stabilizability and α−exponential
stabilizability of control systems with delay.

The next is the presentation on stabilizability of discrete-time control
systems with delay.

1.2. The H∞ control problem

1.2.1. The H∞ space

This section introduces definition of the H∞ space and formula for the
H∞ norm of the transfer matrix function from ω to z.
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1.2.2. The H∞ control problem

This section is intended to discuss the optimal H∞ control problem and
the suboptimal H∞ control problem.

1.3. Linear matrix inequality

Most of this section is dedicated to introducing the concept of linear
matrix inequality (LMI) and the standard LMI problem. This section is
closed with the famous Schur Complement Lemma, which is often used as
an effective tool to transform nonlinear matrix inequalities into LMI.
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Chapter 2

H∞ CONTROL PROBLEM FOR NEURAL NETWORKS
WITH MIXED TIME-VARYING DELAYS

This chapter aims to present the first result of the thesis. Specifically, we
have proposed a sufficient condition for the H∞ control problem for neural
networks with mixed time-varying delays. The content of this chapter is
written based on the paper [1] in the author’s works related to the thesis
that has been published.

2.1. STATEMENT OF THE PROBLEM

Consider a neural networks model is described by the differential system
with mixed time-varying delays:

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t− h(t))) +W2

∫ t

t−k(t)
c(x(s))ds

+Bu(t) + Cω(t)

z(t) = Ex(t) +Mx(t− h(t)) +Nu(t), t > 0, (2.1)

x(t) = ϕ(t), t ∈ [−d, 0],

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector of the neu-
ral networks; u(t) ∈ L2([0, s],Rm) ∀s > 0, is the control input; ω(t) ∈
L2([0,∞),Rr) is the uncertain input; z(t) ∈ Rs is the observation output
of the neural networks; the diagonal matrix A = diag{a1, a2, . . . , an}, ai >
0 ∀i = 1, n represents the self-feedback term and the matricesW0,W1,W2 ∈
Rn×n denote, respectively, the connection weights, the delayed connection
weights, the distributively delayed connection weights; B ∈ Rn×m, N ∈
Rs×m denote the control input matrices; C ∈ Rn×r denotes the perturba-
tion/uncertain input matrix; E,M ∈ Rs×n denotes the observation output
matrix; the time-varying delay functions h(t), k(t) satisfy the condition

0 6 h1 6 h(t) 6 h2, 0 6 k(t) 6 k,

where h1, h2, k are given constants. The initial function ϕ(t) ∈ C1([−d, 0],Rn)

with d = max{h2, k}, and

f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T,

g(x(t− h(t))) = [g1(x1(t− h(t))), g2(x2(t− h(t))), . . . , gn(xn(t− h(t)))]T,
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c(x(t)) = [c1(x1(t)), c2(x2(t)), . . . , cn(xn(t))]T,

are various activation functions such that with every i ∈ {1, . . . , n}, fi(·), gi(·)
and ci(·) are real one variable functions which are Lipschitz continuous with
the corresponding Lipschitz constants ai, bi and ci. Furthermore, assuming
that fi(0) = gi(0) = ci(0) = 0 ∀i = 1, n.

Remark 2.1. (i) The above assumptions imply directly for every i ∈
{1, . . . , n}, the following growth conditions hold:

|fi(ξ)| 6 ai|ξ|, |gi(ξ)| 6 bi|ξ|, |ci(ξ)| 6 ci|ξ| ∀ξ ∈ R.

(ii) The neural networks model is described by the differential systems
with mixed time-varying delays (2.1) with different activation functions
f(x(t)), g(x(t− h(t))), c(x(t)) satisfying the above Lipschitz condition will
have a unique solution on [0,+∞) by Theorem 1.3, Chapter 1 of the thesis.

Definition 2.1. Given α > 0. The zero solution of system (2.1), where
u ≡ 0, ω ≡ 0, is α-exponentially stable if there is a positive number N > 0

such that every solution of the system satisfies:

‖x(t, ϕ)‖ 6 N‖ϕ‖C1e−αt ∀t > 0.

Definition 2.2. Given α > 0, γ > 0. The H∞ control problem for system
(2.1) in proportion to α, γ has a solution if there exists a memoryless state
feedback controller u(t) = Kx(t),K ∈ Rm×n satisfying the following two
requirements:

(i) The zero solution of the closed-loop system:

ẋ(t) = −[A−BK]x(t) +W0f(x(t)) +W1g(x(t− h(t)))

+W2

∫ t

t−k(t)
c(x(s))ds

x(t) = ϕ(t), t ∈ [−d, 0],

is α-exponentially stable.

(ii) There is a number c0 > 0 such that

sup

∞∫
0

‖z(t)‖2dt

c0‖ϕ‖2C1 +
∞∫
0

‖ω(t)‖2dt
6 γ, (2.2)
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where the supremum is taken over all ϕ(t) ∈ C1([−d, 0],Rn) and the
non-zero uncertainty ω(t) ∈ L2([0,∞),Rr), ω 6≡ 0.

In this case we say that the feedback H∞ control u(t) = Kx(t) exponentially
stabilizes the system (2.1).

Remark 2.2. Recall that most often practical systems (including the neural
control system) are subject to external disturbances and in some cases this
can degrade performance if they are not taken into account during the design
phase. Many approaches have been proposed to deal with this problem and
one of them is the H∞ control technique with the assumption that the
disturbance belongs to L2[0,∞). As discussed in Section 1.2, Chapter 1, the
idea here is to design an suboptimal control to minimize the effects of the
external disturbance on the output. In particular, design a controller that
guarantees that H∞−norm of the transfer function between the controlled
output z(t) and the external disturbance ω(t) will not exceed a given level
γ > 0. From there, the relationship between the input and the output

‖z‖2 6 γ‖ω‖2 ∀ω ∈ L2([0,∞),Rq)

is established at the end of Section 1.2.2, Chapter 1 in the context of no delay
and initial condition x(0) = 0. Here, we proposed (2.2) as an extension of
the above constraint that has the form

‖z‖22 6 γ(c0‖ϕ‖2C1 +‖ω‖22) ∀ϕ(·) ∈ C1([−d, 0],Rn), ∀ω(·) ∈ L2([0,∞),Rr),

for the purpose of evaluating the output error z depends on both the ex-
ternal disturbance ω and the initial condition ϕ of the state x.

2.2. THE MAIN RESULT

Before introducing main result, the notations of several matrix variables
are defined for simplicity.

F = diag{a1, . . . , an}, G = diag{b1, . . . , bn}, H = diag{c1, . . . , cn},
c2 = max{c21, . . . , c2n},
P1 = P−1, Q1 = P−1QP−1, R1 = P−1RP−1, S1 = P−1SP−1,

α1 = λmin(P1),

α2 = λmax(P1) + h1λmax(Q1) +
1

2
h32λmax(R1)
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+
1

2
(h2 − h1)2(h2 + h1)λmax(S1) +

1

2
c2k2λmax(D−12 ),

Ω11 = −(AP + PA) +Q+ 2αP +
2

γ
CCT + 2ke2αkW2D2W

T
2 −

3

4
BBT

− e−2αh2R+W0D0W
T
0 +W1D1W

T
1 ,

Ω12 = −PA− 1

2
BBT,

Ω22 = −2P + h22R+ (h2 − h1)2S + 2ke2αkW2D2W
T
2 +

2

γ
CCT

+W0D0W
T
0 +W1D1W

T
1 ,

Ω33 = −e−2αh1Q− e−2αh2S, Ω44 = −e−2αh2R− e−2αh2S.

For simplicity of expression as in Petersen et al. (2000), we assume that
matrices E,M,N of the system (2.1) satisfy

NT[E M ] = 0, NTN = I.

Theorem 2.1. Given α > 0, γ > 0. Suppose the matrix coefficients of
the system (2.1) satisfy: there exist symmetric positive definite matrices
P,Q,R, S and three diagonal positive definite matrices D0, D1, D2 such that
the following LMI holds:

Ω =




Ω11 Ω12 0 e−2αh2R PET PF PH 0 0

∗ Ω22 0 0 0 0 0 0 0

∗ ∗ Ω33 e−2αh2S 0 0 0 0 0

∗ ∗ ∗ Ω44 0 0 0 PMT PG

∗ ∗ ∗ ∗ − 1
2I 0 0 0 0

∗ ∗ ∗ ∗ ∗ − 1
2D0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ − 1
kD2 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
2I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
2D1




< 0.

(2.3)

Then, the H∞ control problem of system (2.1) in proportion to α, γ has a
solution. Moreover, stabilizing feedback controller is

u(t) = −1

2
BTP−1x(t), t > 0,

and the solution of the system, when ω ≡ 0, satisfies

‖x(t, ϕ)‖ 6
√
α2

α1
‖ϕ‖C1e−αt ∀t > 0.
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Remark 2.3. In the papers He et al. (2007), Kwon and Park (2009), Sak-
thivel et al. (2012), additional unknowns and free-weighting matrices were
introduced to provide flexibility in solving the obtained LMIs. However,
too many unknowns and free-weighting matrices employed in the existing
methods complicate the system analysis and significantly increase the com-
putational demand. In order to avoid that disadvantage, Theorem 2.1 does
not involve such free-weighting matrices.

Remark 2.4. Our proposed results have also overcome the limitations of
existing results (He et al. (2007), Phat and Trinh (2010), Phat and Trinh
(2013), Sakthivel et al. (2012). ) of differentiability of delays; moreover,
the discrete delay h(t) has also been extended successfully to the case of
taking value in a interval, i.e., the lower bound of h(t) may be a positive
real number. In addition, the stabilization controller are designed based on
the solution finding of a LMI. For that reason, our criterion is a significant
expansion of the criteria recommended in Phat and Trinh (2013), Sakthivel
et al. (2012).

Remark 2.5. It is clear that the terms of the Ω block matrix depend mono-
tonically on delays so the feasibility of LMI (2.3) will increase as the quanti-
ties h1, h2, k become smaller. In particular, if (2.3) has a solution with some
positive h1, h2, k delays, then it will also feasible for all h̄1, h̄2, k̄ which are
less than h1, h2, k in that order.

2.3. ILLUSTRATION

In this section, we provide a numerical example to illustrate the effec-
tiveness of the obtained conditions in Theorem 2.1.
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Chapter 3

FINITE-TIME H∞ CONTROL PROBLEM FOR LINEAR
DISCRETE-TIME SYSTEMS WITH INTERVAL

TIME-VARYING DELAY

This chapter aims to present the sufficient conditions for solving the
finite-timeH∞ control problem for linear discrete-time systems with interval
time-varying delay, which is also the second result we got in the process of
doing the topic. The content of this chapter is written based on the paper
[2] in the author’s works related to the thesis that has been published.

3.1. CONCEPT OF FINITE-TIME STABILITY

In this section, we present the concept of finite-time stability and assert
its independence with the concept of Lyapunov stability.

3.2. STATEMENT OF THE PROBLEM

Consider the following linear discrete-time systems with interval time-
varying delay:

x(k + 1) = Ax(k) +Adx(k − h(k)) +Bu(k) +Gω(k),

z(k) = Cx(k) + Cdx(k − h(k)), k ∈ Z+, (3.1)

x(k) = ϕ(k), k ∈ {−h2,−h2 + 1, . . . , 0},

where x(k) ∈ Rn is the state; u(k) ∈ Rm is the control input; z(k) ∈ Rp is
the observation output; A,Ad ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×q, C, Cd ∈ Rp×n

are given real constant matrices; h(k) is a delay function satisfying

0 < h1 6 h(k) 6 h2 ∀k ∈ Z+,

where h1, h2 are known positive integers; ϕ(k) is the initial function; ω(k) ∈
Rq satisfying the condition

N∑

k=0

ωT(k)ω(k) < d, (3.2)

with d is a given positive real number.

Definition 3.1. Given positive numbers N, c1, c2, c1 < c2 and a symmetric
positive definite matrix R, discrete-time delay system (3.1) with u(k) = 0 is
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said to be finite-time bounded w.r.t. (c1, c2, R,N) if

max
k∈{−h2,−h2+1,...,0}

ϕT(k)Rϕ(k) 6 c1 =⇒ xT(k)Rx(k) < c2 ∀k = 1, N,

for all disturbances ω(k) satisfying (3.2).

Definition 3.2. Given positive numbers γ,N, c1, c2, c1 < c2 and a symmet-
ric positive definite matrix R, system (3.1) with u(k) = 0 is said to be H∞
finite-time bounded w.r.t. (c1, c2, R,N) if the following two conditions hold:

(i) System (3.1) with u(k) = 0 is finite-time bounded w.r.t. (c1, c2, R,N).

(ii) Under the zero initial condition (i.e. ϕ(k) = 0 ∀k ∈ {−h2,−h2 +

1, . . . , 0}), the output z(k) satisfies

N∑

k=0

zT(k)z(k) 6 γ

N∑

k=0

ωT(k)ω(k), (3.3)

for all disturbances ω(k) satisfying (3.2).

Definition 3.3. Given positive numbers γ,N, c1, c2, c1 < c2, and a symmet-
ric positive definite matrix R, the finite-timeH∞ control problem for system
(3.1) has a solution if there exists a state feedback controller u(k) = Kx(k)

such that the resulting closed-loop system is H∞ finite-time bounded w.r.t.
(c1, c2, R,N).

3.3. THE MAIN RESULTS

Theorem 3.1. Given positive constants γ,N, c1, c2 with c1 < c2, a symmet-
ric positive definite matrix R. Suppose the matrix coefficients of the system
(3.1) satisfy: there exist symmetric positive-definite matrices P,Q, positive
scalars λ1, λ2, λ3 and a scalar δ > 1 such that the following matrix inequal-
ities hold:

λ1R < P < λ2R, Q < λ3R, (3.4)



−δP + (h2 − h1 + 1)Q 0 0 ATP CT

∗ −δh1Q 0 AT
dP CT

d

∗ ∗ − γ
δN
I GTP 0

∗ ∗ ∗ −P 0

∗ ∗ ∗ ∗ −I



< 0, (3.5)
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γd− c2δλ1 c1δ

N+1λ2 ρλ3
∗ −c1δN+1λ2 0

∗ ∗ −ρλ3


 < 0. (3.6)

Then system (3.1) with u(k) = 0 is H∞ finite-time bounded w.r.t. (c1, c2, R,N),
where

ρ := c1δ
N+h2−1

[
h2δ +

h2(h2 − 1)− h1(h1 − 1)

2

]
.

Theorem 3.2. Given positive constants γ,N, c1, c2 with c1 < c2, a symmet-
ric positive-definite matrix R. Suppose the matrix coefficients of the system
(3.1) satisfy: there exist symmetric positive-definite matrices U, V,W1,W2,W3,
a matrix Y and a scalar δ > 1 such that the following matrix inequalities
hold:

U < W2, V < W3, (3.7)



−δU + (h2 − h1 + 1)V 0 0 UAT + Y TBT UCT

∗ −δh1V 0 UAT
d UCT

d

∗ ∗ − γ
δN
I GT 0

∗ ∗ ∗ −U 0

∗ ∗ ∗ ∗ −I



< 0, (3.8)



−W1 c1δ

N+1W2 ρW3

∗ −c1δN+1W2 0

∗ ∗ −ρW3


 < 0, (3.9)

[
W1 − c2δU γdUR

∗ −γdR

]
< 0. (3.10)

Then the finite-time H∞ control of system (3.1 ) has a solution. Moreover,
the state feedback controller is given by

u(k) = Y U−1x(k), k ∈ Z+.

Remark 3.1. As in the papers Zong et al. (2015) and Zuo et al. (2013),
in order to prove Theorem 3.1 (and after that Theorem 3.2), we sought to
construct a new set of Lyapunov–Krasovskii-type functionals which involved
the coefficients δk−1−s and δk−1−t. By that way, we have avoided the need to
transform the original system into two subsystems, as the authors have done
in Zhang et al. (2014) and the obtained conditions (3.4)-(3.6) of Theorem
3.1 and (3.7)-(3.10) of Theorem 3.2 are also in terms of LMIs as in Zhang et
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al. (2014). Here, the δ parameter plays the role as a adjustable parameter
and (3.5)-(3.6), (3.8)-(3.10) will become LMIs when we fix this δ parameter,
so they can be programmed and calculated easily by using the LMI toolbox
in MATLAB. This is also a remarkable advantage of these two theorems of
us in comparison with: conditions (29), (39) in Song et al. (2012), conditions
(45), (56) in Zong et al. (2015) and condition (5) in Zuo et al. (2013).

Remark 3.2. In the articles: He et al. (2008), Liu et al. (2011), Song et
al. (2012), Xiang and Xiao (2011), additional unknowns and free-weighting
matrices are introduced to provide flexibility in solving the obtained LMI.
However, too many unknowns and free-weighting matrices employed in the
existing methods complicate the system analysis and significantly increase
the computational demand. Compared with the free matrix method was
used by that authors, our method uses fewer variables, for example, the LMI
(3.5) has no free-weighting matrices, LMI (3.8) has only one free-weighting
matrix. Therefore, the conditions we propose are less conservative than those
mentioned above.

3.4. ILLUSTRATION

In this section, we provide two numerical examples to illustrate effec-
tiveness of the achieved conditions in the Theorem 3.1 and Theorem 3.2,
respectively.
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Chapter 4

FINITE-TIME H∞ CONTROL PROBLEM FOR SINGULAR
DISCRETE-TIME NEURAL NETWORKS WITH

INTERVAL TIME-VARYING DELAY

The third result of the thesis will be presented in this chapter. Specifi-
cally, we will mention the conditions that solve the finite-time H∞ control
problem for the singular discrete-time neural networks with interval time-
varying delay. The content of the chapter is extracted from the article [3] in
the list of published scientific works of the author related to the thesis.

4.1. A SKETCH OF LINEAR SINGULAR DISCRETE-TIME SYSTEMS

In this section, we present a sketch of the regularity and causality of the
linear singular discrete-time systems with constant delay:

Ex(k + 1) = A0x(k) +A1x(k − τ) +Bu(k), k ∈ Z+,

x(k) = ϕ(k), k ∈ {−τ, −τ + 1, . . . , 0}.
(4.1)

One remarkable result is that with any compatible initial function ϕ(k),
from regularity and causality of the linear system (4.1), we can assert that
the system has unique solution.

4.2. STATEMENT OF THE PROBLEM

Consider the following discrete-time singular neural networks with time-
varying delay:

Ex(k + 1) = Ax(k) +Wf(x(k)) +W1g(x(k − h(k))) +Bu(k) + Cω(k),

z(k) = A1x(k) +Dx(k − h(k)) +B1u(k), k ∈ Z+, (4.2)

x(k) = ϕ(k), k ∈ {−h2,−h2 + 1, . . . , 0},

where x(k) = [x1(k), x2(k), . . . , xn(k)]T ∈ Rn is the neuron state vector; n
is the number of neurals; u(k) ∈ Rm is the control input; z(k) ∈ Rp is the
observation output of the neural networks;

f(x(k)) = [f1(x1(k)), f2(x2(k)), . . . , fn(xn(k))]T,

g(x(k − h(k))) = [g1(x1(k − h(k))), g2(x2(k − h(k))), . . . , gn(xn(k − h(k)))]T

are various neural activation functions, where fi, gi, i = 1, n, are continu-
ously differentiable in a neighbourhood of the origin and satisfy the following
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growth conditions: for every i ∈ {1, . . . , n}, exist ai, bi such that:

|fi(ξ)| 6 ai|ξ|, |gi(ξ)| 6 bi|ξ| ∀ξ ∈ R.

E ∈ Rn×n be singular matrix and rank(E) = r 6 n. The diagonal matrix
A = diag{a1, a2, . . . , an}, |ai| < 1 ∀i = 1, n represents the self-feedback
term; the matrices W, W1 ∈ Rn×n denote the connection weight matrix and
the delayed connection weight matrix, respectively; B ∈ Rn×m, B1 ∈ Rp×m

are the control input matrices; C ∈ Rn×q is the perturbation/uncertain
input matrix; A1, D ∈ Rp×n denote the observation output matrix; the
time-varying delay functions h(k) satisfies the condition

0 < h1 6 h(k) 6 h2 ∀k ∈ Z+,

where h1, h2 are given positive integers; ϕ(k) is the initial function; the
external disturbance ω(k) ∈ Rq satisfying the condition

N∑

k=0

ωT(k)ω(k) < d,

where d > 0 is a given scalar.

Definition 4.1. The pair (E,A) is said to be regular if characteristic poly-
nomial det(sE − A), where s ∈ C, is not identical zero. The pair (E,A) is
said to be causal if deg(det(sE−A)) = rank(E). System (4.2) with u(k) = 0

is said to be regular and causal if the pair (E,A) is regular and causal.

Remark 4.1. If the pair (E, A) is regular and causal, a singular system can
be partitioned into two parts, namely a dynamic subsystem and an algebraic
constraint (see Dai ( 1989), Sau (2018)). If an initial condition satisfies an
algebraic constraint, then the initial condition is called a compatible initial
condition. In contrast to the results given in the previous section for linear
singular system, Example 1 in Lu et al. (2011) shows that even if the matrix
pair (E, A) is regular and causal, solution of a nonlinear singular system
may not exist with any compatible initial condition x(0). In conclusion, the
existence of solution is a fundamental problem for the nonlinear singular
systems in general and singular neural networks in particular, and is com-
pletely independent of regularity and causality. For this reason, whenever
we study class of this systems, existence and uniqueness of the solution,
regularity and causality should be taken into account simultaneously.
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Remark 4.2. The concepts of finite-time boundedness and H∞ finite-time
boundedness w.r.t. (c1, c2, R,N) of the system (4.2) with u(k) = 0 are com-
pletely defined in the same way as those given to the system (3.1) with
u(k) = 0 (see the Definition 3.1 and Definition 3.2). The finite time H∞
control problem for the system (4.2) is also defined quite similarly to the
system (3.1) (see the Definition 3.3).

4.3. THE MAIN RESULTS

Consider the discrete-time singular neural networks (4.2) with u(k) = 0,
due to rank(E) = r 6 n there are two nonsingular matrices M, G ∈ Rn×n

such that MEG =

[
Ir 0

0 0

]
. Let

M =

[
M1

M2

]
, M̄ =

[
0 0

0 In−r

]
M, MAG =

[
A11 A12

A21 A22

]
,

M−TPM−1 =

[
P11 P12

P21 P22

]
, F = diag{a1, . . . , an}, H = diag{b1, . . . , bn},

Φ11 = −δETPE + (h2 − h1 + 1)Q+ S1 +AT
1A1 + F 2 − PM̄A−AM̄TP,

Φ22 = δh1(−S1 + S2), Φ44 = −δh1Q+DTD +H2.

From there, regularity, causality, uniqueness and existence of the solution of
system (4.2) are guaranteed by the following theorem.

Theorem 4.1. Given positive constants γ, N . Suppose the matrix coef-
ficients of the system (4.2) satisfy: there exist symmetric positive-definite
matrices P, Q, S1, S2 and a scalar δ > 1 such that the following matrix
inequality holds:

Φ =




Φ11 0 0 AT
1D −PM̄W −PM̄W1 −PM̄C AP

∗ Φ22 0 0 0 0 0 0

∗ ∗ −δh2S2 0 0 0 0 0

∗ ∗ ∗ Φ44 0 0 0 0

∗ ∗ ∗ ∗ −I 0 0 WTP

∗ ∗ ∗ ∗ ∗ −I 0 WT
1 P

∗ ∗ ∗ ∗ ∗ ∗ − γ
δN
I CTP

∗ ∗ ∗ ∗ ∗ ∗ ∗ −P




< 0.

(4.3)
Then system (4.2) with u(k) = 0 is regular, causal and has unique solution
in a neighborhood of the origin.
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Remark 4.3. In Lu et al. (2011) (Song et al. (2012), respectively), the
authors propose a sufficient condition for the existence and uniqueness of
the solution of nonlinear singular discrete-time systems using fixed point
principle (the implicit function theorem, respectively). In Theorem 4.1, by
applying the implicit function theorem as in Song et al. (2012), we obtained a
sufficient condition for not only the existence and uniqueness of the solution
in a neighborhood of the origin, but also the regularity and causality of
the system (4.2). Because the obtained condition is in terms of a matrix
inequality, it can be effectively solved using the LMI toolbox in Matlab (see
Gahinet et al. (1995)).

Next we state a sufficient condition to ensure that the system (4.2) with
u(k) = 0 is H∞ finite-time bounded w.r.t. (c1, c2, R,N).

Theorem 4.2. Given positive constants γ, N, c1, c2 with c1 < c2 and a
symmetric positive-definite matrix R. Suppose the matrix coefficients of
the system (4.2) satisfy: there exist symmetric positive-definite matrices
P, Q, S1, S2, positive scalars λi, i = 1, 5 and a scalar δ > 1 such that the
following matrix inequalities hold:

Ψ =
[
Ψij

]
11×11

< 0, (4.4)

ETPE < λ1R, Q < λ2R, λ3R < S1 < λ4R, S2 < λ5R, (4.5)



γd− c2λ3 c1δ
N+1λ1 ρλ2 c1δ

N+h1h1λ4 c1δ
N+h2(h2 − h1)λ5

∗ −c1δN+1λ1 0 0 0

∗ ∗ −ρλ2 0 0

∗ ∗ ∗ −c1δN+h1h1λ4 0

∗ ∗ ∗ ∗ −c1δN+h2(h2 − h1)λ5



< 0.

(4.6)

Then system (4.2) with u(k) = 0 is H∞ finite-time bounded w.r.t. (c1, c2, R,N),
where

Ψ11 =− δETPE + (h2 − h1 + 1)Q+ S1 − PM̄A−AM̄TP,

Ψ15 =− PM̄W, Ψ16 = −PM̄W1, Ψ17 = −PM̄C, Ψ18 = AP,

Ψ19 = AT
1 , Ψ1,10 = F, Ψ22 = Φ22, Ψ33 = −δh2S2, Ψ44 = −δh1Q,

Ψ49 = DT, Ψ4,11 = H, Ψ55 = Ψ66 = Ψ99 = Ψ10,10 = Ψ11,11 = −I,
Ψ58 = WTP, Ψ68 = WT

1 P, Ψ77 = − γ

δN
I, Ψ78 = CTP, Ψ88 = −P,

Ψij = 0 forall other i, j: j > i, Ψij = ΨT
ji ∀i, j : i > j,
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ρ = c1
h2(h2+1)−h1(h1−1)

2 δN+h2 .

Theorem 4.3. Given positive constants γ, N, c1, c2 with c1 < c2 and a
symmetric positive-definite matrix R. Suppose the matrix coefficients of the
system (4.2) satisfy: there exist symmetric positive-definite matrices Ui, Vj
with i = 1, 4, j = 1, 5, a matrix Y and a scalar δ > 1 such that the following
matrix inequalities hold:

Ω =
[
Ωij

]
11×11

< 0, (4.7)
[
−V1 U1E

T

∗ −U1

]
< 0, (4.8)

U2 < V2, U3 < V4, U4 < V5, (4.9)



−V3 c1δ
N+1V1 ρV2 c1δ

N+h1h1V4 c1δ
N+h2(h2 − h1)V5

∗ −c1δN+1V1 0 0 0

∗ ∗ −ρV2 0 0

∗ ∗ ∗ −c1δN+h1h1V4 0

∗ ∗ ∗ ∗ −c1δN+h2(h2 − h1)V5



< 0,

(4.10)
[
V3 − c2U3 γdU1R

∗ −γdR

]
< 0. (4.11)

Then the finite-time H∞ control of system (4.2 ) has a solution. Moreover,
the state feedback controller is given by

u(k) = Y U−11 x(k), k ∈ Z+,

where

Ω11 = δU1 + (h2 − h1 + 1)U2 + U3 + δ(U1E
T + EU1)− M̄(AU1 +BY )

− (U1A+ Y TBT)M̄T,

Ω15 = −M̄W, Ω16 = −M̄W1, Ω17 = −M̄C, Ω18 = U1A+ Y TBT,

Ω19 = U1A
T
1 + Y TBT

1 , Ω1,10 = U1F, Ω22 = δh1(−U3 + U4),

Ω33 = −δh2U4, Ω44 = −δh1U2, Ω49 = U1D
T, Ω4,11 = U1H,

Ω55 = Ω66 = Ω99 = Ω10,10 = Ω11,11 = −I, Ω58 = WT, Ω68 = WT
1 ,

Ω77 = − γ

δN
I, Ω78 = CT, Ω88 = −U1, Ωij = 0 forall other i, j: j > i,

Ωij = ΩT
ji ∀i, j : i > j, ρ = c1

h2(h2+1)−h1(h1−1)
2 δN+h2 .
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Remark 4.4. The results we got in the Theorem 4.2 and Theorem 4.3 can
be considered as extensions of the results in Lu et al. (2009) and Ma and
Zheng (2018) to the case H∞ control for the singular discrete-time neural
networks (4.2). To our knowledge, this is the first time that the finite-time
H∞ control problem for singular discrete-time neural networks with time-
varying delay is considered. However, note that unlike most other papers in
type of “the first time”, where criteria are usually given in terms of delay-
independent, all our criteria are delay-dependent, namely depend on the
upper and lower bounds of the delay.

Remark 4.5. In the Theorems 4.1 - 4.3, we sought to construct a new
set of Lyapunov–Krasovskii-type functionals which involved the coefficients
δk−1−s and δk−1−t. Here, the δ parameter plays the role as a adjustable
parameter and (4.3), (4.4), (4.6), (4.7) & (4.10) will become LMIs when we
fix this δ parameter; therefore, they can be easily handled using the LMI
toolbox in MATLAB. This is also a remarkable advantage of our theorems
in comparison with: condition (31) in Ma et al. (2015), conditions (31), (40)
& (49) in Ma et al. (2016) and condition (22b) in Zhang et al. (2014).

4.4. ILLUSTRATION

In this section, we provide two numerical examples to illustrate effec-
tiveness of the obtained conditions in the Theorem 4.2 and Theorem 4.3,
respectively.
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CONCLUSION AND RECOMMENDATION

1. Results of the thesis

In this thesis, we have studied the H∞ control problem for some classes
of differential/difference systems with time-varying delay and get values in
an interval. The obtained main results are

• Designing a feedback controller solves the H∞ control problem for neural
networks with mixed time-varying delays.

• Proposing sufficient conditions to ensure the H∞ finite-time boundedness
for linear discrete-time systems with interval time-varying delay. Then de-
signing a feedback controller that solves the finite-time H∞ control problem
for this class of systems.

• The corresponding results for singular discrete-time neural networks with
interval time-varying delay are also set. In addition, with this class of sys-
tems, we have simultaneously demonstrated regularity, causality, and unique
existence of solution of the system in a neighborhood of the origin.

2. Recommendation of some further research issues

Besides the results achieved in the thesis, some open issues can be further
studied such as:

• Study of stability and the (finite-time) H∞ control problem for other
classes of differential/difference systems and control systems such as non-
linear systems, switched systems, systems with Markovian jumps, etc. with
interval time-varying delays.

• Study of (finite-time) stability and the design of other controller types,
such as output feedback controllers, for classes of differential/difference sys-
tems and control systems with interval time-varying delays.
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